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Abstract

Multi-class imbalance problems are frequently encountered in real-world ap-
plications of machine learning. They have fundamentally complex trade-offs
between classes. Existing literature tends to use a predetermined rebalanc-
ing strategy and mainly focuses on overall performance measures. However,
in many real-world problems, the true level of imbalance and the relative
importance between classes are unknown, making it difficult to predeter-
mine the rebalancing strategy and the evaluation criterion. In this paper,
we explicitly consider the between-class trade-off issue in the multi-class im-
balance problem. We consider all the classes to be important and find a set
of optimal trade-offs for the decision-maker to choose from. To reduce the
computational cost of this process and make it a practical method, we seek
the help of selective ensemble and multiple undersampling rates, and propose
the Multi-class Multi-objective Selective Ensemble (MMSE) framework. We
further equip the objective modeling with margins to reduce the number of
objectives when the task has many classes. Experimental results show that
our proposed methods successfully obtain diverse and highly competitive so-
lutions within an acceptable running time.
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1. Introduction

Class imbalance is a problem frequently encountered in classification
tasks [18]. The data collected can be naturally imbalanced, such as the num-
ber of patients with different diseases [22]. Abundant imbalanced learning
methods have been developed to enhance the relative impact of the minor-
ity class in binary classification problems and achieved good results [17, 4,
5, 26]. However, multi-class imbalance problems are fundamentally more
complex [36, 25].

Firstly, in binary classification, even random guesses can achieve an accu-
racy of 50%, making the problem relatively easy. In contrast, in multi-class
cases, vulnerable classes can perform extremely poorly. Secondly, in binary
classification, the trade-offs are only between one small class and one big
class, while in multi-class imbalance problems, the trade-offs are not only
between small and big classes, but also between different small classes and
between different big classes. Therefore, designing a rebalancing strategy for
multi-class imbalance problems is more challenging. Finally, when it comes
to model evaluation, it is hard to describe a multi-class classifier in one overall
performance score.

In addition to multi-class classification being more complex than binary
classification, another challenge we often face in real-world applications is
that the ground-truth level of imbalance and the ground-truth relative impor-
tance of the classes are often unknown [48]. Note that under the traditional
close-environment assumptions, we always know the targeted performance
measure beforehand [49]. Nevertheless, in an open environment, it is not
always possible to determine the relative importance of each class a priori.
If we can provide the decision-maker with all the possible best trade-off per-
formances of the model, it will greatly help her make decisions in an open
environment.

Taking disease classification as an example, misdiagnosis of certain rare
diseases (classes with a small number of samples) may cause serious problems,
but meanwhile it is impossible to quantify the importance of each class.
Figure 1 gives two examples of different trade-offs. In each example we
assume that there are only two optimal trade-offs, in fact, there may be
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shown in red. shown in blue.

Figure 1: Different trade-offs of per-class accuracy. Different optimal trade-offs result in
different choices by the decision-maker.

many more trade-offs in real applications. If the only two optimal trade-offs
are as shown in Figure 1(a), the decision maker may choose the classifier
shown in red because it can distinguish at least the first four classes. If
the fifth class is indeed important, a separate inspection can be designed.
If the only two optimal trade-offs are as shown in Figure 1(b), the decision-
maker may choose the classifier shown in blue because it achieves satisfactory
performance on all classes. The fundamental factor that affects the decision-
maker’s choice here is that the improvement of the fifth class has different
effects on other classes. Only by presenting different optimal trade-offs to
the decision-maker can she make better choices.

Therefore, when we cannot determine the importance of each class in
advance, we hope to obtain diverse optimal trade-offs among classes for the
decision-maker to choose from. To achieve this goal, we propose to model
the multi-class imbalance problem as a multi-objective problem

maximize (M, M. ..., M) , (1)

where [ denotes the number of classes, M; is the model’s performance on
the i-th class. Given that solutions excelling in different objectives are in-
comparable, multi-objective problems usually have multiple optimal solu-
tions [50, 30, 45]. These optimal trade-off solutions are referred to as Pareto-
optimal solutions (or the Pareto front in the objective space). It is assumed
that revealing the Pareto front will better equip the decision-maker to make
the final choice among these trade-offs.

In the process of searching for multiple optimal solutions on the Pareto
front, we need to generate a large number of solutions, each emphasizing
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different classes. This process can lead to significant model training over-
head. Therefore, reducing this overhead is essential for transforming our
goal into a practical learning algorithm. To address this issue, we propose
the Multi-class Multi-objective Selective Ensemble (MMSE) framework. It
encompasses three fundamental points. 1) We incorporate selective ensem-
ble into the multi-objective modeling. In this way, we don’t have to repeat-
edly train the entire model, but instead obtain different models through dif-
ferent combinations of base learners. 2) We use undersampled datasets to
train base learners, which improves training efficiency. Meanwhile, the model
obtained by ensembling multiple base learners can cover more training sam-
ples, which avoids the problem of information loss. 3) We undersample the
dataset with different undersampling ratios. Different undersampling
ratios for each class represent different rebalancing strategies. By combining
base learners that have heterogeneous emphases over classes, we can obtain a
variety of ensemble models with more diverse choices in performance across
different classes.

With straightforward objective modeling where the performance of each
class is modeled as an objective, we propose MMSE ... However, scalability
is another issue that must be taken into consideration. When the number of
classes increases, the optimization problem becomes difficult because most
of the generated solutions are incomparable. Considering this, we further
propose a margin-based version called MMSEagin. It optimizes common
performance measures by optimizing label-wise and instance-wise margins.
It not only reduces the number of objectives to 3 but also proves to be able
to optimize common performance measures.

Our contributions are summarized as follows:

e We explore the multi-class imbalance problems from a new perspective,
specifically when it is difficult to determine trade-offs between classes
a priori.

e We model the problem as a multi-objective problem, where the per-
formance of each class is optimized as a separate objective. But more
importantly, in order to improve efficiency and make the method practi-
cal, we incorporate undersampling and selective ensemble, and develop
the MMSE framework.

e Considering the scalability issue when the number of classes increases,
we further propose a variant of objective modeling that equips with

4
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margins, and analyze its optimization ability.

e We show in the experiments that both MMSE s and MMSE,416in DOt
only achieve better performance on common performance measures,
but also provide a variety of trade-offs between classes, and within an
acceptable running time.

The rest of this paper is organized as follows. We start by introducing
the related work in Section 2. In Section 3, we first demonstrate the problem
settings, then introduce the proposed MMSE framework in detail. Theoret-
ical analysis is provided in Section 4. In Section 5, experimental results are
reported. Finally, we conclude our work in Section 6.

2. Related work

The most fundamental idea for solving class-imbalanced learning prob-
lems is rebalancing. The methods can be roughly categorized into the fol-
lowing three types. a) Sampling methods. These methods include random
sampling, synthetic sampling [4, 16], and evolutionary-based sampling meth-
ods [11, 33]. b) Re-weighting methods. They are closely related to cost-
sensitive learning where instances in small classes have higher misclassifica-
tion costs [27]. ¢) Hybrid methods. They combine multiple techniques, such
as integrating sampling methods in each boosting round [5, 34|, ensembling
multiple base learners trained on different balanced training sets [6, 26, 10].

Ensemble methods naturally have applications in solving class imbalance
problems, because they can combine the strengths of multiple learners to
achieve better performance [43, 42, 44, 39]. A highly representative approach
is EasyEnsemble [26]. It combines undersampling with ensemble to achieve
effective rebalancing while avoiding information loss. In addition, selective
ensemble methods aim to use some base learners to achieve better results than
a complete ensemble [19], and can also be applied to handle class imbalance
problems [9].

It is worth noting that, many of the imbalanced-learning methods were
originally proposed for binary problems, and the binary imbalanced classi-
fication has been studied more thoroughly [36, 9]. Although many learning
methods are applicable to multi-class imbalance problems, they are generally
direct extensions of the binary rebalancing strategies, without considering
the complex trade-offs among multiple classes [38, 19]. Usually, a learner
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Table 1: Definition of popular multi-class performance measures

Measure Formulation Note
Average l
Accuracy Avg. Acc(h) = % Zl ‘Dly‘ ‘ZD () = y] The average of per-class accuracy.
y= i€Dy
Gomean T The geometric mean of per-class accu-
G-mean(h) = { [ ( 57 2 [h(@i) =] racy.
y=1 Y!ieD,
1
macro-F1 1 2% iep, [h(=)=y] F-measure averaging on each class.
macro-F1(h) = ; g 7|DVHZ1€/DV Tite)=3 ging
. 25 S [h(i)=y] F-measure averaging on the prediction
micro-F1 micro-F1(h) = i=12viehy "
[DI+32521 Eiep, [M(@:i)=y] matrix.
AUC averaging on each class. Smacro
ﬁgcgo— macro-AUC (f) = % Z,—l \D;\TE!\OD n is the set og correct}lly c})rderfd instance
airs consideri rhether the instance
Sy _ b) e D, x {D D < 4w pairs considering whe
macro { @ {D\D} | £ (a) = 1 (@)} belongs to the corresponding class.
AUC averaging on each pair of classes.
. VP A(i | j) is the correctly ordered in-
MA MAUC 2 A, 5 . S
4] ue (f)A Wi-1) ZK] (z:4) stance pairs of the i-th and j-th class
( 7 =1AG17) + A(J [ 9)]/2 based on the predicted probabilities on

A(i]j) = \DHD\{ b) € D; x Dj | f9 (®a) = 9 (1) Jihe i-th class.

is trained based on a pre-determined rebalancing strategy, and then the re-
sults on a series of evaluation criteria, such as F1, G-mean, and MAUC,
are reported [44]. Table 1 summarizes six performance measures commonly
used in multi-class imbalance studies. However, few studies have been con-
ducted when the evaluation criteria and the relative importance of classes
are unknown beforehand.

In this paper, we consider the performance of different classes as multiple
objectives. Recently, many methods have been proposed to optimize multi-
ple objectives simultaneously while training models [41, 40, 23, 24], such as
simultaneously optimizing accuracy and regularization, or considering objec-
tives related to specific tasks such as feature selection. However, they did
not consider the trade-offs among classes. Instead, we directly model the
performance of each class as an objective, and our goal is to provide different
trade-offs between classes for the decision-maker to make choices. This is a
clear difference that makes this paper a different study from existing liter-
ature. Although the idea of modeling each class as an objective is simple,
making its optimization practical requires exquisite design, which is the focus
of our work.
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Goal: provide best trade-offs for Step C: Obtain diverse solutions

the decision-maker to select

Step A: Diverse base learners
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dataset 1 hy
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Efficiency
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Training
dataset
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Scalability
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Sampled
dataset n

Train base learners with different
relative emphases across classes.

Show the decision-maker the
Pareto optimal solutions and
let her make the choice.

Generate solutions with diverse
Pareto-optimal trade-offs.

Figure 2: An illustration of our proposed MMSE framework.

3. The proposed approach

3.1. Problem description
Given the multi-class predictor f : R? — R! where fU)(x) denotes the

predicted probability of instance & on the j-th class. Let h(x) = arg max; f\9)(z)

denote the predicted class. Let D denote a dataset sampled i.i.d. from distri-
bution D over X x Y, where X = R? is the feature space and Y € {1,2,...,1}
is the label space. Let D, denote the set of sample indices with label y. 1|,
is the indicator function, which returns 1 if - is true and 0 otherwise.

In this paper, we consider the problem where the decision-maker’s evalu-

ation criterion is not revealed until she sees the best possible trade-off solu-
tions. We consider the following two scenarios of the evaluation process.
Scenario I: After the Pareto front is revealed, the decision-maker decides
on a certain overall performance measure. The solution that has the best
validation performance on this measure is chosen and the corresponding test
performance is reported. We consider the measures in Table 1 to be the
possible preferences of the decision-maker.
Scenario II: This scenario covers a broader context, in which the decision-
maker may choose any solution on the Pareto front presented to her. Unlike
scenario I, the decision-making process here may be a high-level consideration
of the trade-offs between classes, which is hard to represent explicitly.

In this paper, we propose a multi-objective selective ensemble method
that can deal with the two scenarios simultaneously. Our method not only
achieves good performance in common overall performance measures, but
also generates diverse trade-off solutions between classes.
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3.2. The multi-class multi-objective selective ensemble framework

We present our framework MMSE, as illustrated in Figure 2. It incor-
porates selective ensemble in the multi-objective optimization to enhance
training and storage efficiency, and employs undersampling with different
ratios to help generate diverse solutions.

Multi-objective optimization. To explicitly consider different trade-offs be-
tween classes, we use the validation accuracy of each class as an objective,
and the multi-objective problem is formulated as

g(h,V) = (H/‘Zﬂ[hmz) U T Z]l ha:) l]>, (2)

1€V zEVl

where V' denotes the validation set, and V; denotes the subset of samples
belonging to the i-th class. Usually, the solution to this multi-objective
optimization problem contains many optimal classifiers h, which have their
different advantages in different classes.

Selective ensemble. Let Iy denote a selective ensemble with selector vector
s € {0,1}", where s, = 1 means that the base learner f; is incorporated in
the ensemble. If we consider soft voting to combine the base learners, the
predicted probability of ensemble F on an instance @ is

x) = E1| ;Stft(m> )

where |s| = > " | s; represents the ensemble size. And let

Hy(x) = argmax FY(z) ,
J

denote the predicted class. In this way, the multi-objective optimization
problem becomes a search on the selector vector, i.e.,

(S V (’V’ Z]I[Hs(mz =1]5 - - |V‘ Z]le (xi)=l _’ ‘) (3>

1€V1 1€V]

Combining selective ensemble with multi-objective optimization leads to
greatly reduced time and storage consumption. Without the design of incor-
porating selective ensemble, to find these solutions using a multi-objective

8
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evolutionary algorithm, we have to search many (usually thousands of ) rebal-
ancing settings. Since for each setting we have to train a classifier, in total,
we need to train thousands of classifiers from scratch. In contrast, using the
framework we proposed, we only need to search thousands of combinations.

Generating base learners. When generating the base learners, we construct
multiple undersampled subsets from the training set T'r. Undersampling is
an efficient way to obtain rebalanced datasets with low training overhead.
Compared to it, oversampling has a higher training cost and may also cause
overfitting. The only weakness of undersampling is the possibility of discard-
ing useful samples. But this disadvantage can be compensated for by ensem-
bling multiple undersampled datasets, which avoids information loss [26].
Based on this idea, we use each subset to train a separate classifier, and the
final prediction is made by combining the predictions of all the classifiers.
But there is a novel design in this step of our method, i.e., we undersample
the dataset with different undersampling ratios. From EasyEnsemble, we
know that when ensembling base learners trained on balanced subsets, the
ensemble performance will vary depending on the number of base learners.
Obviously, if the sampling ratios on different classes change for different data
subsets, the performance of the obtained ensemble will also exhibit more
diversity. As our goal is to obtain heterogeneous trade-offs among classes,
combining base learners with heterogeneous emphases over classes will help.

3.8. Objective modeling for many-class cases

In the previous subsection, we use the Eq. (3) version of objective mod-
eling, where the validation accuracy of each class is modeled as objective.
Therefore, we name this method as MMSE,.ss. This type of objective mod-
eling is flexible, and if the optimization problem is well solved, any opti-
mal trade-off between classes can be obtained. However, when the num-
ber of classes is large, the multi-objective problem becomes difficult to op-
timize because most of the generated solutions are incomparable. In such
cases, we propose a margin-based version of objective modeling, and we
name the MMSE method equipped with margin-based objective modeling
as MMSEargin-

The concept of margin has long been used in evaluating a model’s train-
ing performance [13], showing its effectiveness in both generalization ability
and robustness. There have been some new research results recently, such
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as applying it to multi-label problems [37], or using its distribution to char-
acterize classifier performance more precisely [28]. Inspired by the fact that
optimizing label-wise and instance-wise margins can optimize various com-
monly used multi-label performance measures [37], we decided to optimize
the multi-class version of label-wise and instance-wise margins to address our
Scenario I. And we apply different methods to aggregate per-class margins
so that our method can retain certain advantages in Scenario II. Here we
introduce the multi-class version of label-wise and instance-wise margins.
The label-wise margin on instance x; is defined to be

label(f’ z;) = mi,n {f(y) (x;) — f(y’#) (a;l)} , (4)
y

where y is the ground-truth label of instance x;. We group the label-wise
margin on the instances from the y—th class

label ’ _ Z ,ylabel ) (5)
ZEV

The instance-wise margin on label y is defined to be

1nst(f V mm{f f(y (mb) | a € ‘/y,b € V\V} (6>

Instance-wise margin is already defined on each class. But in practice, using
the minimum margin of all pairs of instances is not robust, since noise or
difficult instances may easily cause a meaningless value of ’ymSt. Therefore
we modify Eq. (6) into a more robust mean version

Zf Z f NG

—1nst(f V | |
Yl aev, beV\V

The objective vector for MMSE,argin is defined as

g(s,V) = (VIabel (FS>V)’7inSt (FS>V)7_|SD ) (8)
where
label —label
(Fu V) =7 Z (Fy, V), (9)
75 (Fy, V) = min VLHSE (Fs, V). (10)
y
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Algorithm 1 MMSE
Input: Training data T'r, validation data V', objective modeling g, evalua-
tion criterion ewval denoting the decision making process.
Output: An ensemble.
1: Train base learners {h;}! ; using different training samples obtained by
different sampling strategies.
2: Use NSGA-II to solve the problem arg max g(s, V') obtain a set of Pareto
S

optimal solutions.
3: Present the optimal ensembles to the decision-maker and she selects an
ensemble according to eval.

We use the average and minimum for f‘y}j‘bel and ’7;““ respectively to em-

phasize different aspects of performance across classes. With the objective
modeling in Eq. (8), the number of objectives is limited to 3, no matter how
many classes there are. Meanwhile, the label-wise and instance-wise margins
are related to common performance measures, and the third objective —|s|
benefits the theoretical analysis. An analysis for MMSE,aein is provided in
Section 4.

The pseudocode of MMSE is shown in Algorithm 1. It applies to both
MMSEcjass and MMSEarein, the only difference is the objective modeling
g. NSGA-II [8] is adopted as the multi-objective optimization algorithm.
It is a well-established multi-objective evolutionary algorithm suitable for
such combinatorial multi-objective problems. It is suitable for MMSE,argin
with only three objectives and can achieve a theoretical guarantee of opti-
mization time complexity as will be shown in Section 4. For consistency,
we also use NSGA-II for MMSE.ss. The evaluation criterion eval denotes
the decision-maker’s decision process after obtaining a set of Pareto-optimal
solutions. When presenting the obtained solutions to the decision-maker,
we can use multi-dimensional data visualization methods, such as parallel
coordinates [20, 47], where Figure 1 and Step C in Figure 2 is an example.

4. Theoretical analysis

4.1. Theoretical results

In this section, we prove that MMSE,ein can optimize common multi-
class performance measures with approximation guarantee. Detailed proofs
for theorems will be given in Section 4.2.
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As we have reduced the number of objectives in MMSEargin, We need
to analyze the expressiveness of the objective modeling. We now show that
if the multi-class version of label-wise margin and instance-wise margins are
optimized, then common multi-class imbalance measures can be optimized.

Proposition 1. If all the label-wise margins on dataset D are positive, then
Average Accuracy, G-mean, macro-F1, micro-F1 are optimized.

Proposition 2. If all the instance-wise margins on dataset D are positive,
then macro-AUC and MAUC are optimized.

Then we analyze the approximation guarantee of MMSE argin, with NSGA-

IT being its multi-objective optimization algorithm. This analysis ensures
that the two objectives of MMSEarein can be optimized and have a time
complexity guarantee. Let the selector vector s represent a subset S of V' by
assigning s; = 1 if the ¢-th base learner of V' is in S and s; = 0 otherwise.
Obviously, 72! and ™t are two set functions that are both non-monotone?
and non-submodular?. Therefore, we introduce the e-approximate mono-
tonicity in Definition 1 and g-approximate submodularity in Definition 2 to
characterize how close a set function ¢ is to monotonicity and submodularity,
respectively.

inst

Definition 1 (e-Approximate Monotonicity [21]). Let € > 0. A set function
g: 2V — R is e-approximately monotone if for any S CV and v ¢ S.

g(SU{v}) =2 g(5) —e
It is easy to see that g is monotone iff € = 0.

Definition 2 (8-Approximate Submodularity [7]). Let 0 < 5 < 1. A set
function ¢ : 2" — R is S-approximately submodular if for any S,7 C V and
veV,

> (9(SU{v}) —g(5)) = Bg(SUT) — 9(5)).

veT\S

It is easy to see that ¢ is submodular iff g = 1.

3A set function g : 2" — R is monotone if VX CY CV, g(X) < g(Y).
4A set function g is submodular if it satisfies the “diminishing returns” property, i.e.,
VXCY CV3evix(@(X U{v}) —g(X)) 2 g(X UY) —g(X).

12
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Assume the solutions in the first nondominated front will not be excluded
from the population by NSGA-II. Let ¢; and ; be the approximate mono-
tonicity and approximate submodularity parameter of 7#¢! respectively, €,
and (B, be the approximate monotonicity and approximate submodularity
parameter of v"', respectively. Proposition 3 gives the approximation guar-
antee of MMSE arein on 2P and st

Proposition 3. For the selective ensemble problem defined in Eq. (8) for
MMSE,4rgin, the expected number of iterations of NSGA-II until finding a
solution s with |s| < m and 4'***! > (1 — e=#1) . (OPT™* — me,), and a
solution t with [t| < m and ¥t > (1 —e772). (OPT™' —mey) is O(n(logn +
m)), where OPT®2el gnd OPT™ denote the optimal value of ¥'**¢ and the
optimal value of v, respectively.

Proof sketch. We first prove that with the approximate monotonicity and
approximate submodularity assumption, we can always find an element to
add to a set with certain improvements. Then by tracking the probability
that such an improvement happens on the best solution in the population,
we count the expected number of iterations required by NSGA-II to achieve
the desired approximate guarantee. O]

Remark 1. As Proposition 3 demonstrates, the multi-objective selective en-
semble procedure of MMSE,a4in can achieve the approximate optimal values
of average label-wise margin +'#**! and minimum instance-wise margin
These two margins are statistics of label-wise margin 7/2**! and instance-wise

margin ,"*". And from Proposition 1 and Proposition 2 we know that, if 7;**!
and ,yinst

7
Y

inst

are optimized on all instances and all classes, common multi-class
performance measures are optimized.

4.2. Proofs

4.2.1. Proof of Proposition 1
Proof. If label-wise margin is positive on an instance x;, we have f® (x;) >
fW#Y) (x;) . Therefore,

Va;, h(z;) = argmax f9) (x;) =y .
J

Then we have Vy, |Dly| > Lin@)=y = 1. Hence, Avg. Acc(h) = 1, G-mean(h)
1.

i€D,

13



We also have > 1, = |D,|, therefore

1€ Dy,
1<~ 2|D,|
macro-F1(h) = - — 1,
L = |Dy| + D]
!
25D 9]

micro-F1(h) = = =
DI+ 35, 1Dyl IPI+ D)

322

3 4.2.2. Proof of Proposition 2
Proof. 1f instance-wise margin on label y is positive, then

9 (x,) > fW () ,Va € D,,be D\D, .
s« Hence,

Sglacro = {(0,, b) € Dy X {D\Dy} | f(y) (CUa) Z f(y) (wb)}
=[Dy[[D\Dy] -

325 If it holds for all y, then

macro-AUC ( Shacro =1.
lz |D,| [D\D,|
326 We also have
1 .
b) € D; x D; @) (x,) > O
Ali 1) =g {00 € DDy |19 (@) 2 19 (@)
=1 )
327 and ) ) )
A(i,3) = [AG | j) + A(F | )]/2 =1

28 Therefore, MAUC (f) = 7725 >, A, 5) = 1.
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4.2.3. Proof of Proposition 3
Proof. The proof relies on Lemma 1 and Lemma 2, which are inspired by
[32]. The detailed proofs of these lemmas are presented later.

Lemma 1. Assume that a set function g is e-approximately monotone as in
Definition 1 and [B-approximately submodular as in Definition 2. For any
s €{0,1}" with |s| < m, there exists one element v ¢ s such that

g(sU{v}) —g(s) > 8/m-(OPT —g(s)) — B¢,
where m s the size constraint.

Assume that the number of selected base learners does not exceed m,
Lemma 1 proves that for any s € {0,1}" with |s| < m, there always ex-
ists another element, the inclusion of which can bring an improvement on g
roughly proportional to the current distance to the optimum.

Lemma 2. To maximize an e-approximately monotone and [-approzimately
submodular set function g, the expected number of iterations of the NSGA-II
until finding a solution s with |s| <m and g(s) > (1 —eP)- (OPT — me) is
O(n(logn +m)), where OPT denotes the optimal value.

Lemma 2 proves the approximation guarantee of NSGA-II on any e-
approximately monotone and S-approximately submodular set function g.
As in previous analyses (e.g.,[2, 12]), we may assume that there is a set Sy of
m ”"dummy” elements whose marginal contribution to any set is 0, i.e., for
any S CV,g(5) = g(5\Sq).

By substituting the parameters ¢; and 5, of ~ as well as €5 and [y of

inst

~"™" into Lemma 2, the theorem can be directly obtained. O

label

Proof of Lemma 1. Let s* be an optimal solution containing at most m
items, i.e., 8* = argmaxseo,1}»,s|<m 9(8), and OPT denote the optimal value,
i.e., g(s*) = OPT. We denote the elements in s\s* by uj,us, -, u}, where
t = |s\s*|. Note that ¢ < m as |s| < m. Because g is e-approximately
monotone, we have

95" Us) = g(s" U{ui,up,- - )
> g(s" U{uj, uz, -+ uj_1}) —e
> gst) — te
g(s™) — me, (11)

AV
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where the first three inequalities hold by Definition 1. We denote the elements
in s*\s by v}, v}, -+ ,vf, where | = |s*\s| < m. Then, we have

9(s") — g(s) —me < g(sUs") — g(s)
= 9(3 U {Uivvsa T 7UZ*}> - 9(3)

(9(s U{vj}) = g(s)), (12)

where the first inequality holds by Eq. (11), the first equality holds by the
definition of s*\s, and the last inequality holds by Definition 2. Let v* =
argmaxyey/s ¢(s U {v}). Eq. (12) implies that

g(s") —g(s) —me <1/B - (g(s U{v"}) —g(s)).

Due to the existence of m dummy elements and |s| < m, there must exist
one dummy element v ¢ s satisfying g(s U {v}) — g(s) = 0; this implies that
g(sU{v*}) —g(s) > 0. As [ < m, we have g(s*) —g(s) —me <m/p-(g(sU
{v"}) —g(s)), leading to g(s U{v"}) —g(s) = B/m - (OPT —g(s)) = €. [

Proof of Lemma 2. We divide the optimization process into two phases: (1)
starts from an initial population P with constant size N and finishes after
including the special solution 0 (i.e., empty set) in population; (2) starts after
phase (1) and finishes after finding a solution with the desired approximation
guarantee.

For phase (1), we consider the minimum number of 1-bits of the solutions
in the population P, denoted by Jy,. That is, Jy;, = min{|s| | s € P}.
Assume that currently J,,;, = ¢ > 0, and let s be a corresponding solution,
i.e., |s| =i. It is easy to see that J,,;, cannot increase because s cannot be
weakly dominated by a solution with more 1-bits. In each iteration of NSGA-
IT, to decrease J,,;,, it is sufficient to select s and flip only one 1-bit of s by
the bit-wise mutation operator. This is because the newly generated solution
s’ now has the smallest number of 1-bits (i.e., |s’| = ¢ — 1) and no solution
in P can dominate it; thus it will be included into P. In our setting, the
bit-wise mutation is performed with a probability of 1/2, randomly selecting
a parent solution and independently flipping each bit with a probability of
1/n. Thus, the probability of selecting s from the population and flipping

only one 1-bit of s by bit-wise mutation is 1 - % - (1 — 1/n)" " >
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since the probability of operating bit-wise mutation is %, the probability of
selecting s is % due to uniform selection and s has ¢ 1-bits.

In each iteration of NSGA-II, there are N offspring solutions to be gener-
ated. Thus, the probability of decreasing J,,;, by at least 1 in each iteration
of NSGA-II is at least N - m = ﬁ Note that J,,;, < n. We can then
get that the expected number of iterations of phase (1) (i.e., Jpin reaches 0)
is at most Y., 2* = O(nlogn). Note that the solution 0 will always be
kept in P once generated, since it has the smallest subset size 0 and no other
solution can weakly dominate it.

For phase (2), we consider a quantity J,,q., which is defined as

Jmaz =max{j € {0,1,--- ,m}|ds € P:

5] < j Agls) > (1 - (1 - ﬁ)) . (OPT - me)}.

m

That is, Jyee denotes the maximum value of j € {0,1,--- ,m} such that in
the population P, there exists a solution s with |s| < j and g(s) > (1 —(1—
B/m)7) - (OPT — me). The solution that satisfies this condition may not be
unique in the population, but there must be one in the first front. We consider
the solution s in the first front of NSGA-II. We analyze the expected number
of iterations until J,,,,, = m, which implies that there exists one solution s
in P satisfying that |s| < m and ¢(s) > (1 — (1 — 8/m)™) - (OPT — me) >
(1 —eP) - (OPT — me). That is, the desired approximation guarantee is
reached.

The current value of J,,,, is at least 0, since the population P contains
the solution 0, which will always be kept in P once generated. Assume that
currently J,.. = ¢ < m. Let s be a corresponding solution with the value
i, i.e., |s| < i and g(s) > (1 — (1 —B/m)") - (OPT — me). It is easy to
see that J,,., cannot decrease because cleaning s from P implies that s is
weakly dominated by a newly generated solution §, which must satisfy that
18| <|s| and ¢g(8) > g(s). By Lemma 1, we know that flipping one specific
0-bit of s (i.e., adding a specific element) can generate a new solution s,
which satisfies g(s’) — g(s) > %(OPT — g(s)) — pe. Then, we have

o(s) > (1 - g) ols) + LOPT — e

(1= (1-2)7) orrom
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where the last inequality is derived by g(s) > (1 — (1 —8/m)") - (OPT —me).
After generating s’, it can be guaranteed that there must be a solution weakly
dominant s’ in the first front, and J,,4, > i + 1. Thus, J,,., can increase by
at least 1 in one iteration with probability at least N-4-1-1(1—1)nt > L
where N - % is the expectation of selecting s as a parent solution when the
NSGA-II generates N offspring solutions in each iteration, % is the probability
of operating bit-wise mutation to the parent solution s and %(1 — %)"‘1 is the
probability of flipping a specific bit of s while keeping other bits unchanged.
This implies that it needs at most 2en expected number of iterations to
increase Jyq. Thus, after at most 2emn = O(mn) iterations in expectation,
Jmae must have reached m.

Then, by summing up the expected number of iterations of two phases, we
get that the expected number of iterations of NSGA-II for finding a solution

s with |s| <m and g(s) > (1 —e™?) - (OPT — me) is O(n(logn +m)). O

5. Experiments

In this section, we show with experiments that our methods can efficiently
generate many diverse and highly competitive classification models.

5.1. FExperimental setup

5.1.1. Compared methods

Considering that our methods employ multiple rebalancing strategies
(specifically, all are forms of undersampling) and decision tree ensembles,
we select compared methods that share these key components. The com-
pared methods must be capable of handling multi-class problems. Unlike
our methods, which offer a wide range of choices for decision-makers, exist-
ing methods can only use predetermined rebalancing strategies and offer only
one solution.

We compare our proposed methods MMSE s and MMSE agin to the
following six state-of-the-art ensemble-based multi-class imbalanced learning
methods.

e SMOTE [4]: Tt is a synthesized oversampling algorithm. We over-
sample all the other classes to have the same training samples as the
majority class. Then we use multi-class AdaBoost [15] classifier on the
rebalanced dataset.
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e EasyFEnsemble [26]: It uses undersampling without replacement to gen-
erate multiple balanced training subsets and trains a multi-class Ad-
aBoost on each of them, then combines them.

e BalancedRF [6]: It uses undersampling with replacement to generate
multiple balanced subsets first, then trains a decision tree with random
feature selection on each of the subsets, then combines them.

e SMOTEBoost [5]: It adds a step of synthesized oversampling to make
a balanced training set in each round of boosting. We extend it to
multi-class cases in a way similar to multi-class AdaBoost.

e MDEP [38]: It is a multi-objective selective ensemble method that
simultaneously optimizes validation error, ensemble size, and margin
distribution. We use rebalanced base learners as input.

e DEP [19]: It is a two-stage selective ensemble method that first opti-
mizes the combination error and then solely optimizes the validation
error. We use rebalanced base learners as input.

5.1.2. Datasets

We conduct experiments on ten multi-class datasets, including seven LIB-
SVM datasets [3], one UCI dataset, and two real-world application datasets.
The number of classes varies from 3 (dna) to 26 (letter). The number of
features varies from 6 (car) to 2565 (miRNA). Table 2 records the number
of training instances of each class. In the last column we show the imbalance
rate of each dataset, which is calculated by dividing the number of samples
in the largest class by the number of samples in the smallest class.

Among the benchmark datasets, car, dna is naturally imbalanced, and
vehicle, satimage, pendigits, usps, letter, segment are artificially made imbal-
anced.

The real-world dataset acoustic is naturally imbalanced. The task aims at
predicting the function of an acoustic system. The dataset has 21 continuous
features, indicating the angle of the placements of 21 acoustic units that
determine the function of the system. The four classes are namely amplify,
manify, cage, harvest. The first two classes mean that the sound will decrease
or increase inside the acoustic system. cage means there is a sharp decrease in
the sound field that the system becomes a cage to shield from the sound [35].
harvest means the energy is greatly magnified in a small area that it can
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Table 2: Information of the datasets

Dataset Number of training instances in each class Imbalance rate
car [307 55 968 52] 18.6
vehicle  [170 140 110 80] 2.1
dna [507 487 1074] 2.2
satimage [993 486 956 414 425 809] 24
pendigits  [700 600 500 400 300 200 100 70 50 30] 23.3
usps [800 600 400 400 300 200 100 80 60 50] 16
letter [520 500 480 460 440 420 400 380 360 340 320 300 26

280 260 240 220 200 180 160 140 120 100 80 60 40 20]

segment  [264 210 160 110 80 50 30] 8.8
acoustic  [2477 723 2674 526] 5.1
miRNA  [2207 256 92 92 92 92 92 92 70 64] 34.5

be captured in the form of electricity [1, 29], meanwhile can be dangerous
when the energy focusing is undesired. The extreme cases cage and harvest
naturally happen less often.

The real-world dataset miRNA is naturally imbalanced. Circulating mi-
croRNAs (miRNAs) are promising biomarkers that could be applied to early
detection of cancer. We experimented with data processed from serum
miRNA profiles [46], which has 2565 features, each one of which denotes
the expression level of certain miRNAS. The ten classes are Healthy, Ovar-
ian Cancer, Breast Cancer, Colorectal Cancer, Gastric Cancer, Lung Cancer,
Pancreatic Cancer, Sarcoma, Esophageal Cancer and Hepatocellular Carci-
noma.

5.1.3. Configurations

Experiments were run on a Windows 10 machine with a 3.40 GHz Intel
i7-13700KF CPU and 32 GB memory. Each dataset is randomly partitioned
into training and test sets, and this partitioning process is repeated 10 times
independently and the average result is reported. In the training process of
all the methods, the training set is further partitioned into model training
set and validation set with ratio 3:1 and with stratified sampling, where the
validation set is used for selective ensemble and model selection.

°The miRNA data can be downloaded from https://www.ncbi.nlm.nih.gov/geo/
query/acc.cgi?acc=GSE106817
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For the proposed methods MMSEass and MMSE argin, 100 data sub-
sets are generated each randomly using ‘not minority’ or ‘middle’ sampling
strategies, with ‘not minority’ we undersample all the other classes to have
the same training instances as the minority class, and with ‘middle’ we first
randomly select a class, then undersample classes bigger than that class to
have the same number of training instances as that class. Therefore, a class
has different undersampling rates in different subsets. For each data sub-
set, the base learner is randomly chosen from an Adaboost with 10 trees
or a random forest with 5 trees. The population size of NSGA-II is set to
100, and the maximum number of generations is 100. When generating new
solutions, we randomly perform crossover or mutation with probability 0.5
respectively. When doing crossover, we randomly select two parent solutions
uniformly, and randomly select the position of encodings to combine them
into a new solution. When performing mutation, we randomly select a parent
solution and operate a bit-wise mutation that independently flips each bit of
solution with probability 1/n. Considering the estimation of performance on
the validation set is not accurate, inspired by PONSS [31] that deals with
noisy problems, we use a domination strategy with a threshold.

The hyperparameters of the compared methods are selected based on the
performance on the validation set. Specifically, we rank the performance of
each hyperparameter value, and then select the hyperparameter with the best
average rank on the six performance measures. The number of neighbors in
SMOTE is selected from {3,5}. The number of base learners in EasyEnsem-
ble is selected from {10,20,50} and the number of trees in each Adaboost
is set to 10. The number of decision trees in BalancedRF is selected from
{10,20,50}. The maximum number of base learners in SMOTEBoost is se-
lected from {10,20,50}. As one of the objectives of MMSE is to reduce the
size of ensemble, the number of base learners output by MMSE is less than
50. The above settings ensure that the obtained models contain roughly the
same number of individual learners. For MDEP, the individual learners are
the same as MMSE, the population size is 100 and the maximum number
of generations is 100. For DEP, the data subsets are generated the same as
MMSE, the base learners are decision trees. The maximum number of gener-
ations in each stage is 50, and the population size is 100 for both stages. This
setting ensures that the total number of fitness evaluations during MDEP and
DEP is the same as that of MMSE.
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5.2. Results and discussion

We show that our proposed methods are superior in both Scenario I and
Scenario II decision-making processes.

5.2.1. Scenario I

After MMSEjass 0t MMSE ar0in Obtains a collection of diverse optimal
solutions, we examine them with varied performance measures as described
in Section 3.1. In detail, we choose the best ensemble on the validation set
under each measure and report the corresponding result on the test set. And
for the compared methods that each generate a single model only, we simply
report the model performance on all six measures.

Table 3 and Table 4 show the results on six common performance mea-
sures, where the ranking of each method under each performance measure
is recorded in the parentheses. From the experimental results, our methods
MMSEcass and MMSEargin outperform other methods in all evaluation met-
rics on almost all the datasets, and obtain very competitive results on the
others.

Specifically, on letter dataset, MMSE,,arein has a better average score than
MMSE . on all the performance measures. This is because letter has 26
classes, which is a relatively large number. For MMSE,,s, this means the
number of objectives is large and the optimization process becomes difficult.
At this point, MMSE,arin is able to perform well because the number of ob-
jectives remains unchanged. This demonstrates that the objective modeling
in MMSEargin, which incorporates margin to aggregate the performances of
the classes, is proved to be successful. On the other hand, MMSE.. has its
own advantages. For example, on acoustic dataset, which has only 4 classes,
MMSEqass outperforms MMSE argin On all the measures.

To show a summary of the compared methods on all datasets, Figure 3
plots the average rank of each method on each performance measure. Accord-
ing to the Friedman-Nemenyi test at significance level 0.1, we can observe
that 1) Our methods MMSEj,ss and MMSE,ein achieve the best average
rank on all the performance measures, and they are roughly equally good. 2)
MDEP, BalancedRF and SMOTE are significantly worse than our methods
on all the performance measures. 3) Compared with DEP, SMOTEBoost,
and EasyEnsemble, our methods have no significant advantage, but have bet-
ter average rank on all the performance measures. This indicates the high
competitiveness of our method on these measures, and in Section 5.2.2, we
will further show the richness of the solutions we provide.
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Table 3: Experimental results on benchmark datasets of common performance measures.
The results are shown in mean+std.(rank) of 10 times of running. The smaller the rank, the
better the performance. The best accuracy is highlighted in bold type. An entry is marked
with a bullet ‘o’ if the method is significantly worse than MMSEjass or MMSE,410in based
on the Wilcoxon rank-sum test with confidence level 0.1.

Dataset Method avg. acc G-mean Fl-macro Fl-micro  macro-AUC MAUC
SMOTE 091240.0186)®  0.908F0.0186)®  0.909F0.0114H®  0953F0.0133)  0.9670017®)®  0.962£0.020(8)®
EasyEnsemble 0.911£0.017(7)®  0.908£0.017(7)®  0.797£0.032(7)®  0.84430.0197)®  0.9763£0.0056)®  0.98970.003(5)®
BalancedRF 0918F0.0245®  0.915F0.024(5®  0.833F0.041(6)®  0.873F-0.021(6)8  0.97910.005(5)®  0.988=£0.005(6)®
car SMOTEBoost 09280.0384)®  0.9230.0434)®  0.93900342)  0968F0.017(1)  0.9970.002(1)  0.99570.003(4)®
MDEP 0.8847-0.027(8)®  0.8801-0.0298)®  0.7961-0.068(8)®  0.8431-0.0558)8  0.96710.014(7)®  0.9807£0.008(7)®
DEP 0.9497£0.016(3)®  0.948£0.016(3)  0.907£0.022(5®  0.930£0.0195)®  0.99470.0034)®  0.9970.002(3)®

l\rD/ISE(.laSS(ours) 095740.0232)  0.956720.0232)  0.9297£0.0303)  0.9537£0.016(4) 0.99670.0033)  0.998720.002(2)
l\rﬂ\’ISEmMgm(ours) 0.96410.020(1)  0.96310.021(1)  0.9450.0241)  0962F0.016(2)  0997F0.0022)  0.9980.002(1)

SMOTE 0.66130.041(8)®  0.6413-0.0448)®  0.6661-0.039(8)®  0.660F-0.041(8)®  0.77430.0278)®  0.7747£0.027(8)®

EasyEnsemble 0.7297£0.0315)  0.689£0.0416)  0.7212£0.0335)  0.72630.031(5)  0.91970.0082)  0.9207£0.008(1)
BalancedRF 0.727£0.0246)  0.692£0.0345)  0.7201£0.026(6)  0.72510.024(6)  0.9097£0.008(6)®  0.9107£0.008(6)®

. SMOTEBoost 0.737£0.0202)  0.7047£0.032()  0.732£0.0231)  0.73530.0211)  091400115)  0.9157£0.011(5)

vehicle

MDEP 0.699F0.016(7)®  0.6624-0.026(7)®  0.696F-0.019(7)®  0.697F-0.017(7)®  0.89510.0097)®  0.895£0.009(7)®

DEP 0730£0.0214) 069200334 0724700234 0728100224 09170.0074)  0.9182£0.007(4)

MMSE a6 (ours) 0.738£0.0321)  0.698£0.0412)  0.7317£0.0312)  0.73470.030(2) 0.91970.009(1)  0.919720.009(2)

MMSE pargin(Ours) — 0732£00273)  0.696+0.0373)  0728300263)  07327400253)  0.918£0.0083)  0.919£0.007(3)
SMOTE 0.8820.0158)®  0.881F-0.016(8)®  0.879F-0.0158)®  0.893F-0.0148)®  0.91810.0228)8  0.917£0.022(8)®
EasyEnsemble 0.938£0.006(4)®  0.937£0.006(4)®  0.92370.007(6)®  0.92810.007(6)®  0.99170.002(4)®  0.9920.002(4)®
BalancedRF 0.9332£0.0116)  0.932£0.011(5)®  0.9250.011(5)®  0.93310.0095)®  0.98970.002(6)®  0.989£0.002(5)®
dna SMOTEBoost 0.9337£0.0125)8  0.932£0.0126)0  093130011(4)  0939F00113)  0.98970.0045)®  0.989£0.003(6)®
MDEP 0.9201-0.008(7)®  0.9191-0.008(7)®  0.906F-0.013(7)®  0.913F-0.0137)®  0.98210.0037)®  0.982£0.003(7)®

DEP 0942£0.0072) 094200072 093200072 0938100074 099230.002(3)  0.9920.002(3)

MMSEss(0urs) — 0.944£0.007(1)  0.94310.007(1)  0.93410.0091)  0.9410.0091)  0993£0.0022)  0.993£0.002(2)

MMSE pargin(OUrs) 094000093  094040.0093)  0932400123)  0939F00112)  0.993F0.0011)  0.993=£0.001(1)
SMOTE 0.825F0.011(8)®  0.814F0.0158)®  0.8247F-0.0108)®  0.847F0.008(8)®  0.89710.006@)®  0.8950.007(8)®

EasyEnsemble 0.892£0.0104)  0.888£0.0114)  0.887£0.0094)®  0.901£0.0085)®  0.98810.0024)  0.98770.002(4)
BalancedRF 0.885:£0.0105)®  0.830£0.012(5)®  0.8847£0.009(6)®  0.9001-0.008(6)®  0.9860.002(6)®  0.986£0.002(6)®
satimage SMOTEBoost 0.878£0.0086)®  0.8617£0.011(7)®  0.886£0.008(5)®  0.9091-0.007(2)  0.9867£0.002(5)®  0.986£0.002(5)®
MDEP 0.8761-0.0097®  0.8713-0.0096)®  0.873F-0.0107)®  0.890F-0.011(7)@  0.98310.0047)®  0.98270.004(7)®

DEP 0.895£0.0102)  0.890£0.011(3) 0893700082  0.90810.007(3)  0.9882£0.002(3)  0.9880.002(3)

MMSE a6 (mlrs) 0.894720.0113)  0.8927£0.0122)  0.8937£0.0113)  0.908£0.009(4) 0.98910.002(1)  0.988=0.002(1)

MMSE nargin (ours)  0899£0.012)  0.8940.0141)  0.89510.0091)  09090.008(1)  0988£0.0022)  0.9880.002(2)
SMOTE 0.875F0.0128)8  0.864F-0.016(8)8  0.872F0.0138)®  0.877F0.0128)8  0.93130.007®)®  0.9317£0.007(8)®
EasyEnsemble 0.949£0.008(4)®  0.948£0.008(4)®  0.94970.0084)®  0.94910.0084)®  0.99810.001(4)®  0.998£0.001(4)®
BalancedRF 0.939£0.011(5)®  0.9372£0.011(5)®  0.939£0.011(5)®  0.93910011(5®  0.9972£0.001(6)®  0.997£0.001(6)®
pendigits SMOTEBoost 0.931£0.0176)®  0.922£0.024(7)®  0.9282£0.020(7)®  0.9320.017(6)®  0.9972£0.0025)®  0.997£0.002(5)®
MDEP 0.930F0.011(7® 09281001168  0.930F00116)® 0.931F-0.011(7)®  0.99610.0027)®  0.99670.002(7)®

DEP 0.963£0.0051)  0.962£0.006(1)  0963£0.0053)  09630.0053)  0.9997£0.0003)  0.9997£0.000(3)

MMSE a6 (mlrs) 0.9597420.0063)  0.95870.006(3)  0.9637£0.006(2)  0.964£0.006(1) 0.99970.0002)  0.9997-0.000(1)

MMSE pargin(Ours) 0962200072 096240.0072)  09643-0.006(1) 09631000620 0.999£0.0001)  0.9990.000(2)
SMOTE 0.798F0.012(8)®  0.789F-0.014(8)®  0.801F-0.012(8)®  0.8213-0.0098)®  0.88910.0068)®  0.888=£0.007(8)®
EasyEnsemble 0.9167£0.006(4)®  0.9167£0.006(4)®  0.9162£0.0054)®  0.92430.0044)®  0.995£0.001(4)®  0.99570.001(4)®
BalancedRF 0.896:£0.0095)®  0.895:£0.0105)®  0.897£0.008(6)®  0.9070.007(6)®  0.9920.001(6)®  0.991£0.001(6)®
nsps SMOTEBoost 0.8937£0.008(6)®  0.887£0.008(6)®  0.899£0.007(5)®  0.91010.006(5)®  0.9937£0.001(5)®  0.992£0.001(5)®
MDEP 0.88710.014(®  0.884F-0.0157)®  0.889F-0.0157)®  0.900F-0.014(7)®  0.98910.0057)®  0.9880.005(7)®

DEP 0.922£0.006(1)  0.920£0.007(1) 09242000620  09313£0.0052)  0.996£0.001(3)  0.9952£0.001(3)

l\rl)’ISEclass(mlrs) 0.9217420.0082)  0.9207420.008(2)  0.926220.007(1)  0.9340.006(1) 0.9960.001(1)  0.9952£0.001(2)
MMSE pargin(OUrs) — 0920£0.0073)  091940.0083)  0924300073)  0931400073)  0.996£0.0012)  0.9952£0.001(1)

Continued on Table 4
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Table 4: Experimental results on benchmark datasets of common performance measures
(continued). The results are shown in mean+std.(rank) of 10 times of running. The smaller
the rank, the better the performance. The best accuracy is highlighted in bold type. An
entry is marked with a bullet ‘e’ if the method is significantly worse than MMSE|.ss or
MMSEargin based on the Wilcoxon rank-sum test with confidence level 0.1.

Dataset Method avg. acc G-mean F1l-macro Fl-micro  macro-AUC MAUC
SMOTE 0.76974-0.006(8)®  0.761=£0.007(8)®  0.7681-0.006(3)®  0.76971-0.006(3)®  0.880=£0.003(8)®  0.880=£0.003(8)®
EasyEnsemble 0.8361-0.007(5)®  0.8347£0.007(5®  0.8381-0.006(5)®  0.8371-0.007(5)®  0.9930.001(4)®  0.99370.001(4)®
BalancedRF 0.80474-0.006(7)®  0.8012£0.007(7)®  0.8061-0.006(7)®  0.8051-0.006(7)®  0.983=£0.001(6)®  0.9837£0.001(6)®
SMOTEBoost 0.8751-0.0064)0  0.866=£0.007(4)®  0.8731-0.006(4)®  0.8751-0.0064)®  0.9900.001(5®  0.9907£0.001(5)®

letter

MDEP 0.8102£0.0586)®  0.8023-0.058(6)®  0.80970.056)®  0.8101-0.057(6)®  0.978=£0.0207)®  0.97830.020(7)®
DEP 0.89240.0053)  0.885£0.006(3)  0.8911-0.0053)®  0.893£0.0053)  0.9961-0.001(1)  0.996=£0.001(1)

MMSE ass(ours) 0892400042 088710.0032) 08924000220 089400032 099%6H£0.0013)  0.99630.001(3)
MMSE pargin(OUrs) — 0.894-£0.002(1)  0.888-0.002(1)  0.89310.003(1)  0.8950.0031)  0.996£0.0002)  0.996-0.000(2)

SMOTE 0.934=£0.009(7)®  0.9290.0107)®  0.93240.009(7)®  0.93470.009(7)®  0.961=£0.0058)®  0.961E0.005(8)®
EasyEnsemble 0.9537£0.0094)®  0.95230.0104)®  0.9537£0.0094)®  0.953F0.0094)®  0.9977£0.001H)®  0.99710.001(4)®
BalancedRF 0.931420.0088)®  0.9272£0.0098)®  0.9304-0.008(3)®  0.9314-0.008(8)®  0.9947=0.002(7)®  0.9940.002(7)®
segment SMOTEBoost 0.94974-0.007(5)®  0.945:£0.009(5®  0.9481-0.008(5)®  0.9497F-0.007(5)®  0.9967£0.001(5)®  0.996=£0.001(5)®
MDEP 0942F-0.0126)  0.9397£0.0136)®  0.942100126)8  0942F0.0126)0  0.9950.002(6)®  0.9950.002(6)®

DEP 095940.0092)  0.957£0.0102)  0.959100093)  09597£0.0092)  0.997£0.0013)  0.99720.001(3)

MMSEass(0urs)  0957400093)  0955£00103)  0.95910.0092)  0959100083) 099700012 0.997=£0.001(2)

MMSE pargin (OUIS)  0.960£0.008(1)  0.958-0.009(1)  0.9593-0.008(1)  0.9610.0101)  0.998=£0.0011)  0.998-0.001(1)
SMOTE 0.90474-0.007(7)®  0.9037£0.007(7)®  0.8901-0.008(7)®  0.9261-0.006(6)®  0.9397-0.0048)®  0.9367£0.004(8)®
EasyEnsemble 0.94330.0045)0  0.942:£0.004(5®  0.89310.0056)®  0.923F0.003(7)®  0.9967£0.0004)®  0.995£0.001(4)®
BalancedRF 0.94330.0064)0  0.9437£0.006(4)®  0.9141-0.0054)®  0.9397F-0.0045)®  0.995£0.001(5)®  0.99570.001(5)®
acoustic SMOTEBoost 0.893£0.0108)®  0.8890.011(8)®  0.910720.009(5)®  0.94570.005(4)®  0.995£0.001(6)®  0.994=0.001(6)®
) MDEP 0.924740.0096)0  0.924=£0.0106)®  0.88910011(8)®  0.923F0.0108)®  0.9907£0.003(7)®  0.990=£0.003(7)®
DEP 0.94710.007(2)  09477£0.0072)  0.92210.0073)®  0.9467£0.0053)®  0.99610.0003)®  0.995740.000(3)®

MMSEass(ours) — 0.948-0.00s(1)  0.947:£0.005(1)  0.9320.0051)  0.954-0.0031)  0.99650.000(1)  0.996-£0.000(1)

MMSE argin(0urs) 0947400033 0947400033)  0926£0.0082)  0.949£0.0062)  0.996£0.0002)  0.99630.0002)
SMOTE 05834-0.0338)0  0.548=£0.043(8)®  0.5661-0.031(8)®  0.8361-0.009(7)®  0.781£0.017(8)®  0.768=£0.018(8)®

EasyEnsemble 07914002548 0.7731£00343)  0.72270.0244)®  0.8767-0.007(5)®  0.9907£0.0023)®  0.978720.005(2)
BalancedRF 0.70240.0275)0  0.672£0.031(5®  0.64910.028(6)®  0.8527F0.0106)8  0.9747£0.003(6)®  0.946:£0.006(6)®
. SMOTEBoost 0.658£0.0256)®  0.5831-0.039(7)®  0.6937£0.024(5)®  0.901£0.007(1)  0.988£0.002(5)®  0.96710.005(5)®

miRNA

MDEP 0.638£0.051(7)®  0.5993-0.056(6)®  0.593£0.051(7)®  0.834F-0.0328)8  0.958£0.0197)®  0.924730.020(7)®
DEP 0.797£0.026(3)  0.771320.037(4)  0.7457£0.0302)  0.88830.0093)®  0.98970.002(H®  0.9777£0.005(4)®

MMSE ass(ours) 08040014 0787t0.016(1)  0.747H0.0251) 0894700072 0.9910.002(1)  0.97910.004(1)
kf[l\flSEmargi,,(ours) 0.79910.016(2)  0.7817£0.0222)  0.7403-0.0123)  0.888£0.0094)  0.9903-0.0022)  0.9772£0.004(3)
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Figure 3: The result of the Friedman-Nemenyi test of the compared methods on different
performance measures. The dots indicate the average ranks. The bars indicate the critical
difference with the Nemenyi test at significance level 0.1, and two methods with non-
overlapping bars are significantly different in performance.

In summary, our methods select different solutions based on the decision-
maker’s preferred criterion, and achieve better results than the compared
methods. This quantitatively demonstrates that our method provides highly
competitive choices.

5.2.2. Scenario 11

In Scenario II, the decision-maker may choose any solution on the Pareto
front presented to her. So in order to demonstrate the effectiveness of our
approach, we need to show that we can provide decision-makers with diverse
and good choices.

For ease of presentation, we select three out of six compared methods,
namely DEP, EasyEnsemble, and SMOTEBoost. These three methods are
better because they are not significantly inferior to our methods. We com-
pare the solution sets generated by our methods with the single solution
generated by each of the three selected methods separately. We take the
acoustic dataset as an example and show the classifiers’ validation accuracy
for each class in Figure 4. The solutions in red dominate the compared classi-
fier, which means they perform better than the compared classifier in all the
classes. The solutions in orange are incomparable with the compared classi-
fier, which means they perform better than the compared classifier in at least
one class. In other words, all solutions of our methods shown in Figure 4
have their advantages. And we can observe that these solutions are also very
diverse. This shows that our method can provide the decision-maker with
rich choices, and these choices are no worse than the best three compared
methods.

If we compare the performance of MMSE s and MMSEar4in more care-
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fully, we can observe that the performance of MMSE . is more widely spread
in each class, which clearly reflects the waxing and waning relationship be-
tween the performance of each class. In contrast, the solution distribution of
MMSE hargin On each class has a relatively consistent trend. This is because
MMSEyargin does not directly optimize the accuracy of each class. But even
S0, it still provides many different trade-offs.

Figure 5 and Figure 6 show the performance of MMSEj,ss and MMSE argin
respectively on the rest datasets. We can see that both MMSE., and
MMSE hargin Obtain diverse and highly competitive solutions on all the datasets.
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Figure 4: The solutions generated by MMSE¢,ss and MMSEargin compared with the
single classifier generated by DEP, EasyEnsemble, and SMOTEBoost on acoustic dataset.
The red solutions dominate the compared classifier, and the orange solutions are incom-
parable with the compared classifier.
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Figure 5: The solutions generated by MMSE|,ss compared with the single classifier gen-
erated by DEP, EasyEnsemble, and SMOTEBoost on the other nine datasets. The red
solutions dominate the compared classifier, and the orange solutions are incomparable
with the compared classifier.
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Figure 6: The solutions generated by MMSE arin compared with the single classifier
generated by DEP, EasyEnsemble, and SMOTEBoost on the other nine datasets. The
red solutions dominate the compared classifier, and the orange solutions are incomparable
with the compared classifier.
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Figure 7: Running time comparison.

5.3. Running time comparison

In this subsection, we compare the running time of different methods. The
running time of our methods MMSE . and MMSE 4ein include training of
base learners, multi-objective evolutionary optimization, and the evaluation
of the obtained solution set on all the performance measures. Because our
methods need to show the decision-maker the performance of all the obtained
solutions in all the classes and different evaluation criteria, it is fair to include
this part of the time. The running time of the compared methods includes
the hyper-parameter tuning and the evaluation of the obtained single model
on all the performance measures. As we can observe in Figure 7, the running
time of MMSEjass and MMSE,arein is comparable with EasyEnsemble and
SMOTEBoost, the running time of MDEP is roughly the same, while DEP
has even longer running time. That is to say, our methods successfully obtain
diverse highly competitive solutions efficiently.

5.4. Effectiveness of optimizing margins

MMSE nargin is a novel design of objective modeling proposed to reduce
the number of objectives. In Section 4, we proved that optimizing label-wise
margin can optimize Average Accuracy, G-mean, macro-F1, micro-F1, and
optimizing the instance-wise margin can optimize macro-AUC and MAUC.
Therefore, in this subsection, we experimentally verify it. We choose the
letter dataset, which has a large number of classes that can best demon-
strate the advantages of MMSEarein. We record the objective values and
performance measures of all solutions generated during the multi-objective
optimization process. Figure 8 verifies the positive correlation between op-
timizing the label-wise margin and Average Accuracy, G-mean, macro-F1,
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Figure 8: The relationship between the optimization objective and the performance mea-
sure that can be optimized in theory. The points are all the solutions generated during the
multi-objective evolutionary optimization of applying MMSEarein On the letter dataset.

micro-F1, and the positive correlation between optimizing the instance-wise
margin and macro-AUC and MAUC through two-dimensional scatter plots
and the linear fit lines. The slopes of the fitted lines vary greatly because the
solutions have different ranges of values on different performance measures,
but all slopes are positive, indicating a positive correlation. The key point to
note is that the R? values in all the subplots are good, as an R? value close
to 1 indicates a good fit.

6. Conclusion

In this paper, we revisit the multi-class imbalance problem from the per-
spective of multi-objective optimization. Instead of using a predefined re-
balancing strategy and generating a single model, we propose the MMSE
framework to generate a set of ensembles with the best possible trade-offs
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s2 between classes. In real-world applications where it is difficult to choose be-
sz tween different trade-off strategies a priori, the decision-maker will be in a
a4 better position to make the final choice if the optimal trade-offs are given.
ess Specifically, we propose MMSEjass and MMSEarein.  The latter enjoys a
sas theoretical guarantee. And experimental results verify that both MMSE.gs
oa7 and MMSE,,ein can obtain diverse and highly competitive solutions within
ss an acceptable running time.

649 Currently, we are dealing with class imbalance problems where there is
o a relative lack of samples in the small classes. An interesting future work is
1 to explore how to use the small class information more effectively when the
2 small class samples are extremely scarce. Another interesting direction for fu-
53  ture work is to design specific optimization algorithms for this combinatorial
ss«  multi-objective optimization problem.
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